Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Sex Differ ; 14(1): 87, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082417

RESUMO

BACKGROUND: The nucleus accumbens (NAc) is an important region in motivation and reward. Glutamatergic inputs from the infralimbic cortex (ILC) to the shell region of the NAc (NAcSh) have been implicated in driving the motivation to seek reward through repeated action-based behavior. While this has primarily been studied in males, observed sex differences in motivational circuitry and behavior suggest that females may be more sensitive to rewarding stimuli. These differences have been implicated for the observed vulnerability in women to substance use disorders. METHODS: We used an optogenetic self-stimulation task in addition to ex vivo electrophysiological recordings of NAcSh neurons in mouse brain slices to investigate potential sex differences in ILC-NAcSh circuitry in reward-seeking behavior. Glutamatergic neurons in the ILC were infected with an AAV delivering DNA encoding for channelrhodopsin. Entering the designated active corner of an open field arena resulted in photostimulation of the ILC terminals in the NAcSh. Self-stimulation occurred during two consecutive days of testing over three consecutive weeks: first for 10 Hz, then 20 Hz, then 30 Hz. Whole-cell recordings of medium spiny neurons in the NAcSh assessed both optogenetically evoked local field potentials and intrinsic excitability. RESULTS: Although both sexes learned to seek the active zone, within the first day, females entered the zone more than males, resulting in a greater amount of photostimulation. Increasing the frequency of optogenetic stimulation amplified female reward-seeking behavior. Males were less sensitive to ILC stimulation, with higher frequencies and repeated days required to increase male reward-seeking behavior. Unexpectedly, ex vivo optogenetic local field potentials in the NAcSh were greater in slices from male animals. In contrast, female medium-spiny neurons (MSNs) displayed significantly greater intrinsic neuronal excitability. CONCLUSIONS: Taken together, these data indicate that there are sex differences in the motivated behavior driven by glutamate within the ILC-NAcSh circuit. Though glutamatergic signaling was greater in males, heightened intrinsic excitability in females appears to drive this sex difference.


The shell region of the nucleus accumbens (NAcSh) is involved in motivation and reward. It receives excitatory glutamatergic inputs from multiple brain regions. One specific region is the infralimbic cortex (ILC), which when activated, influences reward-seeking behavior. While previous research has focused on males, there are inherent sex differences in reward circuitry and reward-seeking behavior. Using an optogenetic self-stimulation task, in addition to ex vivo electrophysiological recordings, we found inherent sex differences in the ILC-NAcSh circuit in behavioral output, synaptic strength, and intrinsic neurophysiology. Female mice showed more robust reward-seeking behavior. Increasing the frequency of stimulation intensified this behavior in females, while males required higher frequencies and repeated testing days to increase their reward-seeking behavior. Surprisingly, optogenetically stimulating the ILC terminals in the NAcSh in brain slices resulted in stronger responses in males. More consistent with the behavioral data, female MSNs displayed higher intrinsic excitability. Our results suggest that there are sex differences in motivated behavior, driven by glutamatergic signaling in the ILC-NAc circuit. Despite stronger ILC-based glutamatergic signaling in males, heightened intrinsic excitability of MSNs in females seems to be the driving force behind this sex difference in reward-seeking behavior. These findings contribute to our understanding of the neural mechanisms behind sex-based differences in motivation and their potential implications for substance use disorders.


Assuntos
Núcleo Accumbens , Caracteres Sexuais , Camundongos , Animais , Feminino , Masculino , Humanos , Núcleo Accumbens/fisiologia , Neurônios/fisiologia , Córtex Cerebral
2.
Int Rev Neurobiol ; 168: 33-91, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36868633

RESUMO

Estrogen receptors were initially identified as intracellular, ligand-regulated transcription factors that result in genomic change upon ligand binding. However, rapid estrogen receptor signaling initiated outside of the nucleus was also known to occur via mechanisms that were less clear. Recent studies indicate that these traditional receptors, estrogen receptor α and estrogen receptor ß, can also be trafficked to act at the surface membrane. Signaling cascades from these membrane-bound estrogen receptors (mERs) can rapidly alter cellular excitability and gene expression, particularly through the phosphorylation of CREB. A principal mechanism of neuronal mER action has been shown to occur through glutamate-independent transactivation of metabotropic glutamate receptors (mGlu), which elicits multiple signaling outcomes. The interaction of mERs with mGlu has been shown to be important in many diverse functions in females, including driving motivated behaviors. Experimental evidence suggests that a large part of estradiol-induced neuroplasticity and motivated behaviors, both adaptive and maladaptive, occurs through estradiol-dependent mER activation of mGlu. Herein we will review signaling through estrogen receptors, both "classical" nuclear receptors and membrane-bound receptors, as well as estradiol signaling through mGlu. We will focus on how the interactions of these receptors and their downstream signaling cascades are involved in driving motivated behaviors in females, discussing a representative adaptive motivated behavior (reproduction) and maladaptive motivated behavior (addiction).


Assuntos
Receptores de Estradiol , Receptores de Glutamato Metabotrópico , Humanos , Feminino , Estradiol , Receptores de Estrogênio , Ligantes
3.
Front Endocrinol (Lausanne) ; 13: 1009379, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36246891

RESUMO

Estrogen receptors were initially identified in the uterus, and later throughout the brain and body as intracellular, ligand-regulated transcription factors that affect genomic change upon ligand binding. However, rapid estrogen receptor signaling initiated outside of the nucleus was also known to occur via mechanisms that were less clear. Recent studies indicate that these traditional receptors, estrogen receptor-α and estrogen receptor-ß, can also be trafficked to act at the surface membrane. Signaling cascades from these membrane-bound estrogen receptors (mERs) not only rapidly effect cellular excitability, but can and do ultimately affect gene expression, as seen through the phosphorylation of CREB. A principal mechanism of neuronal mER action is through glutamate-independent transactivation of metabotropic glutamate receptors (mGluRs), which elicits multiple signaling outcomes. The interaction of mERs with mGluRs has been shown to be important in many diverse functions in females, including, but not limited to, reproduction and motivation. Here we review membrane-initiated estrogen receptor signaling in females, with a focus on the interactions between these mERs and mGluRs.


Assuntos
Receptores de Estrogênio , Receptores de Glutamato Metabotrópico , Estrogênios/metabolismo , Feminino , Glutamatos , Humanos , Ligantes , Motivação , Receptores de Estrogênio/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Reprodução
4.
J Neurosci ; 41(42): 8790-8800, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34470806

RESUMO

Social behaviors, including reproductive behaviors, often display sexual dimorphism. Lordosis, the measure of female sexual receptivity, is one of the most apparent sexually dimorphic reproductive behaviors. Lordosis is regulated by estrogen and progesterone (P4) acting within a hypothalamic-limbic circuit, consisting of the arcuate, medial preoptic, and ventromedial nuclei of the hypothalamus. Social cues are integrated into the circuit through the amygdala. The posterodorsal part of the medial amygdala (MeApd) is involved in sexually dimorphic social and reproductive behaviors, and sends projections to hypothalamic neuroendocrine regions. GABA from the MeApd appears to facilitate social behaviors, while glutamate may play the opposite role. To test these hypotheses, adult female vesicular GABA transporter (VGAT)-Cre and vesicular glutamate transporter 2 (VGluT2)-Cre mice were transfected with halorhodopsin (eNpHR)-expressing or channelrhodopsin-expressing adeno-associated viruses (AAVs), respectively, in the MeApd. The lordosis quotient (LQ) was measured following either photoinhibition of VGAT or photoexcitation of VGluT2 neurons, and brains were assessed for c-Fos immunohistochemistry (IHC). Photoinhibition of VGAT neurons in the MeApd decreased LQ, and decreased c-Fos expression within VGAT neurons, within the MeApd as a whole, and within the ventrolateral part of the ventromedial nucleus (VMHvl). Photoexcitation of VGluT2 neurons did not affect LQ, but did increase time spent self-grooming, and increased c-Fos expression within VGluT2 neurons in the MeApd. Neither condition altered c-Fos expression in the medial preoptic nucleus (MPN) or the arcuate nucleus (ARH). These data support a role for MeApd GABA in the facilitation of lordosis. Glutamate from the MeApd does not appear to be directly involved in the lordosis circuit, but appears to direct behavior away from social interactions.SIGNIFICANCE STATEMENT Lordosis, the measure of female sexual receptivity, is a sexually dimorphic behavior regulated within a hypothalamic-limbic circuit. Social cues are integrated through the amygdala, and the posterodorsal part of the medial amygdala (MeApd) is involved in sexually dimorphic social and reproductive behaviors. Photoinhibition of GABAergic neurons in the MeApd inhibited lordosis, while photoactivation of glutamate neurons had no effect on lordosis, but increased self-grooming. These data support a role for MeApd GABA in the facilitation of social behaviors and MeApd glutamate projections in anti-social interactions.


Assuntos
Complexo Nuclear Corticomedial/metabolismo , Neurônios GABAérgicos/metabolismo , Ácido Glutâmico/metabolismo , Comportamento Social , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo , Animais , Feminino , Ácido Glutâmico/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Caracteres Sexuais , Comportamento Sexual Animal/fisiologia , Proteína Vesicular 2 de Transporte de Glutamato/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
5.
J Neuroendocrinol ; 31(6): e12725, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31050077

RESUMO

The two isoforms of the nuclear estrogen receptor, ERα and ERß are widely expressed in the central nervous system. Although they were first described as nuclear receptors, both isoforms have also been found at the cell membrane where they mediate cell signaling. Surface biotinylation studies using neuronal and glial primary cultures label an alternatively spliced form of ERα. The 52 kDa protein, ERαΔ4, is missing exon 4 and is highly expressed in membrane fractions derived from cultured cells. In vivo, both full-length (66 kDa) ERα and ERαΔ4 are present in membrane fractions. In response to estradiol, full-length ERα and ERαΔ4 are initially trafficked to the membrane, and then internalized in parallel. Previous studies determined that only the full-length ERα associates with metabotropic glutamate receptor-1a (mGluR1a), initiating cellular signaling. The role of ERαΔ4, remained to be elucidated. Here, we report ERαΔ4 trafficking, association with mGluR2/3, and downstream signaling in female rat arcuate nucleus (ARH). Caveolin (CAV) proteins are needed for ER transport to the cell membrane, and using co-immunoprecipitation CAV-3 was shown to associate with ERαΔ4. CAV-3 was necessary for ERαΔ4 trafficking to the membrane: in the ARH, microinjection of CAV-3 siRNA reduced CAV-3 and ERαΔ4a in membrane fractions by 50%, and 60%, respectively. Moreover, co-immunoprecipitation revealed that ERαΔ4 associated with inhibitory mGluRs, mGluR2/3. Estrogen benzoate (EB) treatment (5 µg; s.c.; every 4 days; three cycles) reduced levels of cAMP, an effect attenuated by antagonizing mGluR2/3. Following EB treatment, membrane levels of ERαΔ4 and mGluR2/3 were reduced implying ligand-induced internalization. These results implicate ERαΔ4 in an estradiol-induced inhibitory cell signaling in the ARH.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Caveolina 3/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animais , Receptor alfa de Estrogênio/genética , Éxons/genética , Feminino , Isoformas de Proteínas , Transporte Proteico , Ratos Long-Evans
6.
J Comp Neurol ; 526(8): 1287-1306, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29424419

RESUMO

Virtually all rodent neuroendocrine corticotropin-releasing-hormone (CRH) neurons are in the dorsal medial parvicellular (mpd) part of the paraventricular nucleus of the hypothalamus (PVH). They form the final common pathway for adrenocortical stress responses. Their activity is controlled by sets of GABA-, glutamate-, and catecholamine-containing inputs arranged in an interactive pre-motor network. Defining the nature and arrangement of these inputs can help clarify how stressor type and intensity information is conveyed to neuroendocrine neurons. Here we use immunohistochemistry with high-resolution 3-dimensional image analyses to examine the arrangement of single- and co-occurring GABA, glutamate, and catecholamine markers in synaptophysin-defined pre-synaptic terminals in the PVHmpd of unstressed rats and Crh-IRES-Cre;Ai14 transgenic mice: respectively, vesicular glutamate transporter 2 (VGluT2), vesicular GABA transporter (VGAT), dopamine ß-hydroxylase (DBH), and phenylethanolamine n-methyltransferase (PNMT). Just over half of all PVHmpd pre-synaptic terminals contain VGAT, with slightly less containing VGluT2. The vast majority of terminal appositions with mouse CRH neurons occur non-somatically. However, there are significantly more somatic VGAT than VGluT2 appositions. In the rat PVHmpd, about five times as many pre-synaptic terminals contain PNMT than DBH only. However, because epinephrine release has never been detected in the PVH, PNMT terminals may functionally be noradrenergic not adrenergic. PNMT and VGluT2 co-occur in some pre-synaptic terminals indicating the potential for co-transmission of glutamate and norepinephrine. Collectively, these results provide a structural basis for how GABA/glutamate/catecholamine interactions enable adrenocortical responses to fast-onset interosensory stimuli, and more broadly, how combinations of PVH neurotransmitters and neuromodulators interact dynamically to control adrenocortical activity.


Assuntos
Neurônios/citologia , Neurotransmissores/metabolismo , Núcleo Hipotalâmico Paraventricular/citologia , Terminações Pré-Sinápticas/metabolismo , Proteína Relacionada com Agouti/metabolismo , Animais , Butiratos/metabolismo , Dopamina beta-Hidroxilase/metabolismo , Feminino , Proteínas da Membrana Plasmática de Transporte de GABA , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/metabolismo , Neuropeptídeo Y/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Proteína Vesicular 2 de Transporte de Glutamato/metabolismo , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...